深入学习已被利用气候数据的统计侦查。具体地,已经成功地应用于降水估计的二维(2D)卷积神经网络(CNN)。该研究实现了一种三维(3D)CNN,以估计来自3D大气数据的流域规模的每日降水,并将结果与2D CNN的结果进行比较。沿时间方向(3D-CNN-TIME)和垂直方向(3D-CNN-VERT)延伸2D CNN。将这些扩展CNN的降水估计与第2D CNN的降水估计与根均方误差(RMSE),NASH-SUTCLIFFE效率(NSE)和第99百分位RMSE相比。发现3D-CNN-TIME和3D-CNN-VERT与2D CNN相比提高了降水估计的模型精度。3D-CNN-VERT在RMSE和NSE方面提供了培训和测试期间的最佳估计。
translated by 谷歌翻译
由一维卷积神经网络(1D-CNN)和长短期存储器(LSTM)网络组成的架构,该架构被提出为CNNSLSTM,用于在此中进行每小时降雨 - 径流模型学习。在CNNSLTSM中,CNN分量在长时间接收小时气象时间序列数据,然后LSTM组件从1D-CNN和小时气象时间序列数据接收提取的特征以进行短期持续时间。以案例研究为例,CNNSLSTM在日本伊希卡里河流域的每小时降雨径流建模。气象数据集由沉淀,空气温度,蒸发散,和长波辐射组成,用作输入,河流流量用作目标数据。为了评估所提出的CNNSLSTM的性能,将CNNSLSTM的结果与1D-CNN,LSTM的结果进行比较,仅用每小时输入(LSTMWHOUT),1D-CNN和LSTM(CNNPLSTM)的并行架构,以及使用每日的LSTM架构每小时输入数据(LSTMWDPH)。与三个传统架构(1D-CNN,LSTMWHOUL和CNNPLSTM)相比,CNNSLSTM对估计准确度明显改进,最近提出了LSTMWDPH。与观察到的流动相比,测试时段的NSE值的中值为0.455-0.469,用于1d-CNN(基于NCHF = 8,16和32,第一层的特征图的信道的数量CNN),用于CNNPLSTM的0.639-0.656(基于NCHF = 8,16和32),LSTMWHOUR的0.745,LSTMWDPH的0.831,CNNSLSTM为0.865-0.873(基于NCHF = 8,16和32)。此外,所提出的CNNSLSTM将1D-CNN的中值降低50.2%-51.4%,CNPLSTM在37.4%-40.8%,LSTMWHOUR,达27.3%-29.5%,LSTMWDPH为10.6%-13.4%。
translated by 谷歌翻译
本研究调查了深度学习方法可以在输入和输出数据之间识别的关系。作为一个案例研究,选择了通过长期和短期内存(LSTM)网络在雪撬流域中的降雨 - 径流建模。每日沉淀和平均空气温度用作估计日常流量放电的模型输入。在模型培训和验证之后,使用假设输入进行了两个实验模拟,而不是观察到的气象数据,以澄清训练模型对输入的响应。第一个数值实验表明,即使没有输入沉淀,训练有素的模型产生流量放电,特别是冬季低流量和高流量在融雪期间。在没有沉淀的情况下,还通过训练模型复制了暖和较冷的条件对流动放电的影响。此外,该模型仅反映了在总年流量放电的积雪期间的总降水量的17-39%,揭示了强烈缺乏水量保护。本研究的结果表明,深度学习方法可能无法正确学习输入和目标变量之间的显式物理关系,尽管它们仍然能够保持强大的拟合效果。
translated by 谷歌翻译